Smart Four Channel Highside Power Switch

Features

- Overload protection
- Current limitation
- Short-circuit protection
- Thermal shutdown
- Overvoltage protection (including load dump)
- Fast demagnetization of inductive loads

Product Summary

Overvoltage Protection Operating voltage	$V_{b b}(A Z)$ $V_{b b}$ (on)	$\begin{array}{r} 43 \\ 5.0 \ldots 34 \end{array}$		V
active channels:	one	two parallel	four parallel	
On-state resistance Ron	100	50	25	$\mathrm{m} \Omega$
Nominal load current LL(NOM)	2.9	4.3	6.3	A
Current limitation LL(SCr)	8	8	8	A

- Reverse battery protection ${ }^{1)}$
- Undervoltage and overvoltage shutdown with auto-restart and hysteresis
- Open drain diagnostic output
- Open load detection in ON-state
- CMOS compatible input
- Loss of ground and loss of V_{bb} protection
- Electrostatic discharge (ESD) protection

Application

$\bullet \mu \mathrm{C}$ compatible power switch with diagnostic feedback for 12 V and 24 V DC grounded loads

- All types of resistive, inductive and capacitive loads
- Replaces electromechanical relays and discrete circuits

General Description

N channel vertical power FET with charge pump, ground referenced CMOS compatible input and diagnostic feedback, monolithically integrated in Smart SIPMOS® technology. Fully protected by embedded protection functions.

Pin Definitions and Functions

Pin	Symbol	Function
1,10,	$V_{\text {bb }}$	Positive power supply voltage. Design the wiring for the simultaneous max. short circuit currents from channel 1 to 4 and also for low 11,12, 15,16, 19,20
thermal resistance		

Pin configuration (top view)

V_{bb}	1	20	$\mathrm{~V}_{\mathrm{bb}}$
GND1/2	2	19	$\mathrm{~V}_{\mathrm{bb}}$
IN1	3	18	OUT1
ST1/2	4	17	OUT2
IN2	5	16	$\mathrm{~V}_{\mathrm{bb}}$
GND3/4	6	15	$\mathrm{~V}_{\mathrm{bb}}$
IN3	7	14	OUT3
ST3/4	8	13	OUT4
IN4	9	12	$\mathrm{~V}_{\mathrm{bb}}$
V_{bb}	10	11	$\mathrm{~V}_{\mathrm{bb}}$

[^0]
SIEMENS

Block diagram

Four Channels; Open Load detection in on state;

Leadframe connected to pin $1,10,11,12,15,16,19,20$

Maximum Ratings at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Values	Unit
Supply voltage (overvoltage protection see page 4)	V_{bb}	43	V
Supply voltage for full short circuit protection	V_{bb}	34	V
$T_{\mathrm{j}, \text { start }=-40 \ldots+150^{\circ} \mathrm{C}}$			

Maximum Ratings at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Values	Unit
Load current (Short-circuit current, see page 5)	IL	self-limited	A
Load dump protection ${ }^{2}$) $V_{\text {LoadDump }}=U_{\mathrm{A}}+V_{\mathrm{s}}, U_{\mathrm{A}}=13.5 \mathrm{~V}$ $\left.R\right\|^{3}=2 \Omega, t_{\mathrm{d}}=200 \mathrm{~ms} ; \mathbb{N}=$ low or high, each channel loaded with $R_{\mathrm{L}}=4.7 \Omega$,	$V_{\text {Load dump }}{ }^{4}$	60	V
Operating temperature range	$T_{\text {j }}$	-40 ...+150	${ }^{\circ} \mathrm{C}$
Storage temperature range	$T_{\text {stg }}$	-55 ...+150	
Power dissipation (DC) (all channels active) $T_{\mathrm{a}}=25^{\circ} \mathrm{C}:$ $T_{\mathrm{a}}=85^{\circ} \mathrm{C}:$	$P_{\text {tot }}$	$\begin{aligned} & 3.7 \\ & 1.9 \end{aligned}$	W
Inductive load switch-off energy dissipation, single pulse $\begin{aligned} & \left.\mathrm{V}_{\mathrm{bb}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}, \text { start }}=150^{\circ} \mathrm{C}^{5}\right) \\ & \mathrm{I}_{\mathrm{L}}=2.9 \mathrm{~A}, \mathrm{Z}_{\mathrm{L}}=58 \mathrm{mH}, 0 \Omega \\ & \mathrm{I}_{\mathrm{L}}=4.3 \mathrm{~A}, \mathrm{Z}_{\mathrm{L}}=58 \mathrm{mH}, 0 \Omega \\ & \mathrm{I}_{\mathrm{L}}=6.3 \mathrm{~A}, \mathrm{Z}_{\mathrm{L}}=58 \mathrm{mH}, 0 \Omega \end{aligned}$ one channel: two parallel channels: four parallel channels: see diagrams on page 9 and page 10	$E_{\text {AS }}$	0.3 0.65 1.5	J
Electrostatic discharge capability (ESD) (Human Body Model)	$V_{\text {ESD }}$	1.0	kV
Input voltage (DC)	$V_{\text {IN }}$	-10 ... +16	V
Current through input pin (DC)	$I_{\text {IN }}$	± 2.0	mA
Current through status pin (DC) see internal circuit diagram page 8	$I_{\text {ST }}$	± 5.0	
Thermal resistance junction - soldering point 5),6) each channel: junction - ambient $)^{\text {(}}$ one channel active: all channels active:			
	$R_{\text {this }}$	15	K/W
	$R_{\text {thja }}$	41	
		34	

[^1]
Electrical Characteristics

Parameter and Conditions, each of the four channels	Symbol	Values			Unit
at $T_{j}=25^{\circ} \mathrm{C}, V_{b b}=12 \mathrm{~V}$ unless otherwise specified		\min	typ	\max	

Load Switching Capabilities and Characteristics

$\begin{array}{cc} \hline \begin{array}{c} \text { On-state resistance }\left(\mathrm{V}_{\mathrm{bb}} \text { to } \mathrm{OUT}\right) \\ \text { each channel, }, \end{array} & T_{\mathrm{j}}=25^{\circ} \mathrm{C}: \\ & T_{\mathrm{j}}=150^{\circ} \mathrm{C}: \\ & \\ & \text { two parallel channels, } \\ \text { four parallel channels, } & T_{\mathrm{j}}=25^{\circ} \mathrm{C}: \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C}: \\ \hline \end{array}$	Ron	--	$\begin{array}{r} 85 \\ 170 \\ \\ 43 \\ 22 \end{array}$	$\begin{array}{r} 100 \\ 200 \\ \\ 50 \\ 25 \\ \hline \end{array}$	$\mathrm{m} \Omega$
Nominal load currentone channel active: two parallel channels active: four parallel channels active: Device on PCB5), $T_{\mathrm{a}}=85^{\circ} \mathrm{C}, T_{\mathrm{j}} \leq 150^{\circ} \mathrm{C}$	L(NOM)	$\begin{aligned} & 2.5 \\ & 3.8 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.3 \\ & 6.3 \end{aligned}$	--	A
Output current while GND disconnected or pulled $u p ; V_{b b}=30 \mathrm{~V}, V_{\mathrm{IN}}=0$, see diagram page 9	$L_{\text {L(GNDhigh) }}$	--	--	10	mA
Turn-on time to $90 \% V_{\text {OUT }}$:	$t_{\text {on }}$	80	200	400	$\mu \mathrm{s}$
Turn-off time to 10% Vout: $R_{\mathrm{L}}=12 \Omega, T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}$	$t_{\text {off }}$	80	200	400	
Slew rate on 10 to $30 \% V_{\text {OUt }}, R_{\mathrm{L}}=12 \Omega, \quad T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}$:	$\mathrm{d} V / \mathrm{dt}_{\text {on }}$	0.1	--	1	$\mathrm{V} / \mathrm{\mu s}$
Slew rate off 70 to $40 \% V_{\text {OUT }}, R_{L}=12 \Omega, \quad T_{j}=-40 \ldots+150^{\circ} \mathrm{C}$:	-dV/dt ${ }_{\text {off }}$	0.1	--	1	$\mathrm{V} / \mathrm{\mu s}$

Operating Parameters

Operating voltage ${ }^{7}$)	$T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}$:	$V_{\text {bb(on) }}$	5.0	--	34	V
Undervoltage shutdown	$T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}$:	$V_{\text {bb (under) }}$	3.5	--	5.0	V
Undervoltage restart	$\begin{array}{r} T_{\mathrm{j}}=-40 \ldots+25^{\circ} \mathrm{C}: \\ T_{\mathrm{j}}=+150^{\circ} \mathrm{C}: \\ \hline \end{array}$	$V_{\text {bb(}}$ r rst)	--	--	$\begin{aligned} & 5.0 \\ & 7.0 \\ & \hline \end{aligned}$	V
Undervoltage restart of charge pump see diagram page $14 \quad T_{j}=-40 \ldots+150^{\circ} \mathrm{C}$:		$V_{\text {bb(ucp) }}$	--	5.6	7.0	V
Undervoltage hysteresis$\Delta V_{\mathrm{bb}} \text { (under) }=V_{\mathrm{bb}(\text { u rst) }}-V_{\mathrm{bb}(\text { under })}$		$\Delta V_{\text {bb(under) }}$	--	0.2	--	V
Overvoltage shutdown	$T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}$:	$V_{\text {bb(over }}$	34	--	43	V
Overvoltage restart	$T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}$:	$V_{\text {bb(} 0 \text { rst) }}$	33	--	--	V
Overvoltage hysteresis	$T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}$:	$\Delta V_{\text {bb(over }}$	--	0.5	--	V
Overvoltage protection ${ }^{8)}$ $I_{\mathrm{bb}}=40 \mathrm{~mA}$	$T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}$:	$V_{\text {bb(AZ }}$	42	47	--	V

[^2]Parameter and Conditions, each of the four channels at $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{bb}}=12 \mathrm{~V}$ unless otherwise specified

Symbol	Values			
	\min	typ	\max	

Standby current, all channels off $T_{\mathrm{j}}=25^{\circ} \mathrm{C}:$ $\mathrm{V}_{\mathrm{IN}}=0$ $T_{\mathrm{j}}=150^{\circ} \mathrm{C}:$	$\mathrm{l}_{\mathrm{bb} \text { (off) }}$	--	28 44	$\begin{aligned} & 60 \\ & 70 \end{aligned}$	$\mu \mathrm{A}$
Leakage output current (included in $I_{\text {bb(off) }}$) $V \mathbb{I N}=0$	$I_{\text {(off) }}$	--	--	12	$\mu \mathrm{A}$
Operating current 9), $V_{\text {IN }}=5 \mathrm{~V}, T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}$ $I_{\mathrm{GND}}=I_{\mathrm{GND} 1 / 2}+I_{\mathrm{GND} 3 / 4}, \quad$ one channel on: four channels on:	IGND	--	2 8	3 12	mA

Protection Functions

Initial peak short circuit current limit, (see timing diagrams, page 12)

$\begin{aligned} \text { each channel, }, \\ T_{\mathrm{j}}=-40^{\circ} \mathrm{C}: \\ T_{\mathrm{j}}=25^{\circ} \mathrm{C}: \\ T_{\mathrm{j}}=+150^{\circ} \mathrm{C}: \end{aligned}$ two parallel channels four parallel channels	$L_{L(S C p)}$ four		$\begin{array}{r} 18 \\ 14 \\ 8 \\ \text { of one } \\ \text { of one } \end{array}$	$\begin{gathered} 25 \\ 22 \\ 14 \\ \text { inel } \\ \text { inel } \end{gathered}$	A
Repetitive short circuit current limit, $T_{\mathrm{j}}=T_{\mathrm{jt}}$ each channel two parallel channels (see timing diagrams, page 12)	L(SCr)	--	8 8 8	--	A
Initial short circuit shutdown time $T_{\mathrm{j}, \text { start }}=-40^{\circ} \mathrm{C}:$ $T_{\mathrm{j}, \text { start }}=25^{\circ} \mathrm{C}:$ (see page 11 and timing diagrams on page 12)	$t_{\text {off(}}$ SC)	--	3.8 3	-	ms
Output clamp (inductive load switch off) ${ }^{10}$ at $\mathrm{V}_{\mathrm{ON}(\mathrm{CL})}=\mathrm{V}_{\mathrm{bb}}-\mathrm{V}_{\text {OUT }}$	$V_{\text {ON(CL) }}$	--	47	--	V
Thermal overload trip temperature	$T_{\text {jt }}$	150	--	--	${ }^{\circ} \mathrm{C}$
Thermal hysteresis	$\Delta T_{\text {jt }}$	--	10	--	K

Reverse Battery

Reverse battery voltage $\left.{ }^{11}\right)$	$-V_{b b}$	--	--	32	V
Drain-source diode voltage $\left(V_{\text {out }}>V_{b b}\right)$ $\mu=-2.9 \mathrm{~A}, T_{\mathrm{j}}=+150^{\circ} \mathrm{C}$	$-V_{\mathrm{ON}}$	--	610	--	mV

9) Add $I_{S T}$, if $I_{S T}>0$
10) If channels are connected in parallel, output clamp is usually accomplished by the channel with the lowest $\mathrm{V}_{\mathrm{ON}(\mathrm{CL})}$
11) Requires a 150Ω resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Note that the power dissipation is higher compared to normal operating conditions due to the voltage drop across the intrinsic drain-source diode. The temperature protection is not active during reverse current operation! Input and Status currents have to be limited (see max. ratings page 3 and circuit page 8).

Symbol	Values			Unit
	\min	typ	\max	

Diagnostic Characteristics

$\begin{array}{r} \hline \text { Open load detection current, (on-condition) } \\ \text { each channel, } \begin{array}{r} T_{\mathrm{j}}=-40^{\circ} \mathrm{C}: \\ T_{\mathrm{j}}=25^{\circ} \mathrm{C}: \\ T_{\mathrm{j}}=150^{\circ} \mathrm{C}: \end{array} \end{array}$ two parallel channels four parallel channels	$\begin{aligned} & I_{\mathrm{L}(\mathrm{OL})} \\ & \\ & \\ & \text { twic } \\ & \text { four time } \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$		$\begin{aligned} & 400 \\ & 300 \\ & 300 \\ & \text { annel } \\ & \text { annel } \end{aligned}$	mA
Open load detection voltage ${ }^{12}$) $\quad T_{\mathrm{j}}=-40 . .+150^{\circ} \mathrm{C}$:	$V_{\text {OUT(OL) }}$	2	3	4	V
Internal output pull down (OUT to GND), VOUT $=5 \mathrm{~V}$ $T_{\mathrm{j}}=-40 . .+150^{\circ} \mathrm{C}:$	R_{0}	4	10	30	$\mathrm{k} \Omega$

Input and Status Feedback ${ }^{13)}$

$\begin{array}{ll}\text { Input resistance } \\ \text { (see circuit page 8) } & T_{\mathrm{j}}=-40 . .+150^{\circ} \mathrm{C} \text { : }\end{array}$	R_{1}	2.5	3.5	6	$\mathrm{k} \Omega$
	$V_{\operatorname{IN}(\mathrm{T}+)}$	1.7	--	3.5	V
$\text { Input turn-off threshold voltage } \underset{T_{\mathrm{j}}=-40 . .+150^{\circ} \mathrm{C} \text { : }}{\substack{\text { a }}}$	$V_{\operatorname{IN}(\mathrm{T}-)}$	1.5	--	--	V
Input threshold hysteresis	$\Delta V_{\operatorname{IN}(\mathrm{T})}$	--	0.5	--	V
$\begin{array}{ll} \hline \text { Off state input current } & V_{\mathrm{IN}}=0.4 \mathrm{~V}: \\ T_{\mathrm{j}}=-40 . .+150^{\circ} \mathrm{C} \text { : } & \\ \hline \end{array}$	$I_{\text {IN(off }}$	1	--	50	$\mu \mathrm{A}$
$\begin{array}{ll} \hline \text { On state input current } & V_{\mathrm{IN}}=5 \mathrm{~V}: \\ T_{\mathrm{j}}=-40 . .+150^{\circ} \mathrm{C}: & \\ \hline \end{array}$	$I_{1 N(\text { on })}$	20	50	90	$\mu \mathrm{A}$
Delay time for status with open load after switch off (other channel in off state) (see timing diagrams, page 13), $T_{\mathrm{j}}=-40 . .+150^{\circ} \mathrm{C}:$	$t_{\text {d(ST OL4) }}$	100	320	800	$\mu \mathrm{S}$
Delay time for status with open load after switch off (other channel in on state) (see timing diagrams, page 13), $T_{\mathrm{j}}=-40 . .+150^{\circ} \mathrm{C}:$	$t_{\text {d(ST OL5) }}$	--	5	20	$\mu \mathrm{s}$
Status invalid after positive input slope (open load) $T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}:$	$t_{\text {d(ST) }}$	--	200	600	$\mu \mathrm{s}$
Status output (open drain)					
Zener limit voltage $T_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}, I_{\mathrm{ST}}=+1.6 \mathrm{~mA}$:	$V_{\text {ST(high }}$	5.4	6.1	--	V
ST low voltage $\quad T_{j}=-40 \ldots+25^{\circ} \mathrm{C}, I_{\mathrm{ST}}=+1.6 \mathrm{~mA}$: $T_{\mathrm{j}}=+150^{\circ} \mathrm{C}, I_{\mathrm{ST}}=+1.6 \mathrm{~mA}:$	$V_{\text {ST (low) }}$	---	--	$\begin{aligned} & 0.4 \\ & 0.6 \end{aligned}$	

[^3]
Truth Table

Parallel switching of channel 1 and 2 (also channel 3 and 4) is easily possible by connecting the inputs and outputs in parallel (see truth table). If switching channel 1 to 4 in parallel, the status outputs ST1/2 and ST3/4 have to be configured as a 'Wired OR' function with a single pull-up resistor.

Terms

Leadframe $\left(\mathrm{V}_{\mathrm{bb}}\right)$ is connected to pin $1,10,11,12,15,16,19,20$
External $R_{G N D}$ optional; two resistors $R_{G N D 1 / 2}, R_{G N D 3 / 4}=150 \Omega$ or a single resistor $R_{G N D}=75 \Omega$ for reverse battery protection up to the max. operating voltage.
14) With additional external pull up resistor
15) An external short of output to $V_{b b}$ in the off state causes an internal current from output to ground. If $R_{G N D}$ is used, an offset voltage at the GND and ST pins will occur and the V_{ST} low signal may be errorious.
16) Low resistance to V_{bb} may be detected by no-load-detection

Input circuit (ESD protection), IN1... 4

ESD zener diodes are not to be used as voltage clamp at DC conditions. Operation in this mode may result in a drift of the zener voltage (increase of up to 1 V).

Status output, ST1/2 or ST3/4

ESD-Zener diode: 6.1 V typ., max 5.0 mA ; $\mathrm{RST}_{\mathrm{ST}}(\mathrm{ON})<380 \Omega$ at 1.6 mA , ESD zener diodes are not to be used as voltage clamp at DC conditions. Operation in this mode may result in a drift of the zener voltage (increase of up to 1 V).

Inductive and overvoltage output clamp, OUT1... 4

VON clamped to $\operatorname{VON(CL)}=47 \mathrm{~V}$ typ.

Overvoltage protection of logic part
GND1/2 or GND3/4

$\mathrm{V}_{\mathrm{Z} 1}=6.1 \mathrm{~V}$ typ., $\mathrm{V}_{\mathrm{Z} 2}=47 \mathrm{~V}$ typ., $\mathrm{R}_{\mathrm{I}}=3.5 \mathrm{k} \Omega$ typ., $\mathrm{R}_{\mathrm{GND}}=150 \Omega$

Reverse battery protection

$R_{\mathrm{GND}}=150 \Omega, R_{\mathrm{I}}=3.5 \mathrm{k} \Omega$ typ,
Temperature protection is not active during inverse current operation.

Open-load detection, OUT1... 4

ON-state diagnostic condition:
$\left.V_{\mathrm{ON}}<\mathrm{R}_{\mathrm{ON}} \cdot \mathrm{IL}_{\mathrm{L}} \mathrm{OL}\right)$; IN high

OFF-state diagnostic condition:
Vout > 3 V typ.; IN low

GND disconnect

(channel $1 / 2$ or $3 / 4$)

Any kind of load. In case of $I N=$ high is $V_{O U T} \approx V_{I N}-V_{I N}\left(T_{+}\right)$. Due to $V_{G N D}>0$, no $V_{S T}=$ low signal available.

GND disconnect with GND pull up
(channel $1 / 2$ or $3 / 4$)

Any kind of load. If $\mathrm{V}_{\mathrm{GND}}>\mathrm{VIN}_{\mathrm{IN}}-V_{\mathrm{IN}}\left(\mathrm{T}_{+}\right)$device stays off Due to $\mathrm{V}_{\mathrm{GND}}>0$, no $\mathrm{V}_{\mathrm{ST}}=$ low signal available.

Vbb disconnect with energized inductive load

For an inductive load current up to the limit defined by E_{AS} (max. ratings see page 3 and diagram on page 10) each switch is protected against loss of V_{bb}.
Consider at your PCB layout that in the case of Vbb disconnection with energized inductive load the whole load current flows through the GND connection.

Inductive load switch-off energy dissipation

Energy stored in load inductance:

$$
E_{\mathrm{L}}=1 / 2 \cdot \mathrm{~L} \cdot \mathrm{I}_{\mathrm{L}}^{2}
$$

While demagnetizing load inductance, the energy dissipated in PROFET is

$$
E_{A S}=E_{b b}+E_{L}-E_{R}=\int V_{O N(C L)} \cdot i_{L}(t) d t
$$

with an approximate solution for $R_{L}>0 \Omega$:

$$
E_{\mathrm{AS}}=\frac{\mathrm{IL} \cdot \mathrm{~L}}{2 \cdot \mathrm{R}_{\mathrm{L}}}\left(\mathrm{~V}_{\mathrm{bb}}+\left|\mathrm{V}_{\mathrm{OUT}(\mathrm{CL})}\right|\right) \ln \left(1+\frac{\mathrm{IL} \cdot \mathrm{R}_{\mathrm{L}}}{\left|\mathrm{~V}_{\mathrm{OUT}(\mathrm{CL})}\right|}\right)
$$

Maximum allowable load inductance for a single switch off (one channel) ${ }^{5}$)

$$
L=f\left(I_{L}\right) ; \mathrm{T}_{\mathrm{j}, \text { start }}=150^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{bb}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0 \Omega
$$

SIEMENS

Typ. on-state resistance
$\boldsymbol{R O N}_{\boldsymbol{O}}=\boldsymbol{f}\left(\boldsymbol{V}_{\boldsymbol{b} \boldsymbol{b}}, \boldsymbol{T}_{\boldsymbol{j}}\right) ; \mathrm{IL}_{\mathrm{L}}=2 \mathrm{~A}, \mathbb{I N}=$ high
RoN [mOhm]

Typ. open load detection current
$I_{L}(O L)=f\left(V_{b b}, T_{j}\right) ; I N=$ high

Typ. standby current

$I_{b b}(o f f)=f\left(T_{j}\right) ; \mathrm{V}_{\mathrm{bb}}=9 \ldots 34 \mathrm{~V}, \operatorname{IN} 1 \ldots 4=$ low
lbb (off) $[\mu \mathrm{A}]$

Typ. initial short circuit shutdown time
$t_{\text {off }}(S C)=f\left(T_{j, s t a r t}\right) ; \mathrm{V}_{\mathrm{bb}}=12 \mathrm{~V}$
$\mathrm{t}_{\mathrm{off}}(\mathrm{SC})$ [msec]

Timing diagrams

Timing diagrams are shown for chip 1 (channel $1 / 2$). For chip 2 (channel $3 / 4$) the diagrams are valid too. The channels 1 and 2, respectively 3 and 4, are symmetric and consequently the diagrams are valid for each channel as well as for permuted channels

Figure 1a: V_{bb} turn on:

Figure 2a: Switching a lamp:

The initial peak current should be limited by the lamp and not by the initial short circuit current $\mathrm{I}_{\mathrm{L}(\mathrm{SCp})}=14 \mathrm{~A}$ typ. of the device.

Figure 2b: Switching an inductive load

*) if the time constant of load is too large, open-load-status may occur

Figure 3a: Turn on into short circuit:
shut down by overtemperature, restart by cooling

Heating up of the chip may require several milliseconds, depending on external conditions ($\mathrm{t}_{\mathrm{off}(\mathrm{SC})}$ vs. $\mathrm{T}_{\mathrm{j}, \text { start }}$ see page 11)

Figure 3b: Turn on into short circuit: shut down by overtemperature, restart by cooling (two parallel switched channels 1 and 2)

IN1/2

$\rightarrow t_{\text {off(SC) }}$
ST1/2

Figure 4a: Overtemperature:
Reset if $T_{\mathrm{j}}<T_{\mathrm{jt}}$

Figure 5a: Open load: detection in ON-state, open load occurs in on-state

$\mathrm{V}_{\text {OUT1 }}$

$\left.\mathrm{t}_{\mathrm{d}(\mathrm{ST}} \mathrm{OL} 1\right)=30 \mu \mathrm{~s}$ typ., $\mathrm{t}_{\mathrm{d}(\mathrm{ST} \text { OL2) }}=20 \mu \mathrm{~s}$ typ

Figure 5b: Open load: detection in ON-state, turn on/off to open load

The status delay time $\operatorname{td}($ STOL4 $)$ allows to distinguish between the failure modes "open load in ON-state" and "overtemperature".

Figure 5c: Open load: detection in ON- and OFF-state (with REXT), turn on/off to open load

$\mathrm{t}_{\mathrm{d}(\mathrm{ST} \text { OL5) }}$ depends on external circuitry because of high impedance

Figure 6a: Undervoltage:

Figure 6b: Undervoltage restart of charge pump

$\mathrm{IN}=$ high, normal load conditions.
Charge pump starts at $\mathrm{V}_{\mathrm{bb}(\mathrm{ucp})}=5.6 \mathrm{~V}$ typ.

Figure 7a: Overvoltage:

Package and Ordering Code

Standard P-DSO-20-9 Ordering Code

BTS721L1	Q67060-S7002-A2

Definition of soldering point with temperature T_{s} : upper side of solder edge of device pin 15.

Pin 15

Printed circuit board (FR4, 1.5 mm thick, one layer $70 \mu \mathrm{~m}, 6 \mathrm{~cm}^{2}$ active heatsink area) as a reference for max. power dissipation $P_{\text {tot }}$, nominal load current $I_{\text {L(NOM) }}$ and thermal resistance $R_{\text {thja }}$

[^0]: 1) With external current limit (e.g. resistor $\mathrm{R}_{\mathrm{GND}}=150 \Omega$) in GND connection, resistor in series with ST connection, reverse load current limited by connected load.
[^1]: 2) Supply voltages higher than $\mathrm{V}_{\mathrm{bb}(\mathrm{AZ})}$ require an external current limit for the GND and status pins, e.g. with a 150Ω resistor in the GND connection and a $15 \mathrm{k} \Omega$ resistor in series with the status pin. A resistor for input protection is integrated.
 3) $\quad R_{I}=$ internal resistance of the load dump test pulse generator
 4) $\mathrm{V}_{\text {Load dump }}$ is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839
 5) Device on $50 \mathrm{~mm}^{*} 50 \mathrm{~mm}^{*} 1.5 \mathrm{~mm}$ epoxy PCB FR4 with $6 \mathrm{~cm}^{2}$ (one layer, $70 \mu \mathrm{~m}$ thick) copper area for V_{bb} connection. PCB is vertical without blown air. See page 15
 6) Soldering point: upper side of solder edge of device pin 15 . See page 15
[^2]: 7) At supply voltage increase up to $V_{\mathrm{bb}}=5.6 \mathrm{~V}$ typ without charge pump, $V_{\mathrm{OUT}} \approx V_{\mathrm{bb}}-2 \mathrm{~V}$
 8) see also $V_{O N(C L)}$ in circuit diagram on page 8.
[^3]: 12) External pull up resistor required for open load detection in off state.
 13) If ground resistors $R_{G N D}$ are used, add the voltage drop across these resistors.
